Quantum Latin squares and unitary error bases
نویسندگان
چکیده
We introduce quantum Latin squares, combinatorial quantum objects which generalize classical Latin squares. We show that quantum Latin squares can be seen as weakened versions of mutually-unbiased bases (MUBs). Our main results use quantum Latin squares to give a new construction of unitary error bases (UEBs), basic structures in quantum information which lie at the heart of procedures such as teleportation, dense coding and error correction.
منابع مشابه
Constructing Mutually Unbiased Bases from Quantum Latin Squares
We introduce orthogonal quantum Latin squares, which restrict to traditional orthogonal Latin squares, and investigate their application in quantum information science. We use quantum Latin squares to build maximally entangled bases, and show how mutually unbiased maximally entangled bases can be constructed in square dimension from orthogonal quantum Latin squares. We also compare our construc...
متن کاملBiunitary constructions in quantum information
We present an infinite number of constructions involving unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on biunitary connections, algebraic objects which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs ...
متن کاملAll Teleportation and Dense Coding Schemes
We establish a one-to-one correspondence between (1) quantum teleportation schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled vectors, (4) orthonormal bases of unitary operators with respect to the Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus operators can be chosen to be unitary. The teleportation and dense coding schemes are assumed...
متن کاملNew construction of mutually unbiased bases in square dimensions
We show that k = w + 2 mutually unbiased bases can be constructed in any square dimension d = s provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (k, s)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bound...
متن کاملMutually unbiased bases, orthogonal Latin squares, and hidden-variable models
Mutually unbiased bases encapsulate the concept of complementarity—the impossibility of simultaneous knowledge of certain observables—in the formalism of quantum theory. Although this concept is at the heart of quantum mechanics, the number of these bases is unknown except for systems of dimension being a power of a prime. We develop the relation between this physical problem and the mathematic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information & Computation
دوره 16 شماره
صفحات -
تاریخ انتشار 2016